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Annual Summary for NASA Interchange NCA2-543

Three technical reports were submitted this year, including this one.

They are:

1. Electromagnetic characterization of conformal antennas (Univ. of

Michigan Report #027723-4-T).

2. Scattering and radiation analysis of three dimensional cavity arrays

via a hybrid finite element method (Univ. of Michigan Report

#027723-5-T).

3. A finite element-boundary integral formulation for conformal arrays

on a circular cylinder (Univ. of Michigan Report #027723-6-T).

The first of these reports described several extensions and further

developments associated with the microstrip patch array code developed last

year. Specifically, modifications were introduced into our original finite

element formulation to permit simulations of embedded resistive cards,

lumped loads and impedance surfaces. The new implementations were

validated, and a number of new design schemes were examined for

controlling the RCS, resonance frequency and array aperture size. For

example, the RCS gain of rectangular patches was examined as a function of

lumped load values and locations; dielectric coatings were examined for

controlling the patch RCS; resistive ribbons were employed and found

suitable for broadband RCS reduction without excessive compromise in

gain; dual cavities were shown to provide resonance control and decrease in

array aperture size; and reactive resistive sheets provided an attractive

alternative for controlling the patch's resonance frequency. Needless to

mention, during the course of this year our finite element rectangular patch

array code was improved in many respects. Its geometry interface was

expanded to allow for greater adaptability, several new features were added

as noted above and a variety of reference calculations were generated

providing potential uses with possible new application of the code. Finally,

a short code manual was written.





In addition to the above improvements of our finite element planar

patch array code, one additional code was completed for infinite planar patch

arrays, and we began the development of another code suitable for

cylindrically conformal patch arrays. Specifically, a rather thorough

analysis and investigation was completed for the scattering and radiation

analysis of an infinite path array backed by rectangular cavities. The

pertinent finite element formulation was developed ab initio, and measured

data were collected for validating the code. By invoking Floquet's theorem,

the computational domain was restricted to a single element, and this was

the primary reason for considering the infinite array formulation. We have

already found that the infinite array approximation is sufficiently accurate

for modelling large arrays. Thus, instead of using our original patch array

code which is computationally intensive for large arrays, one can resort to

the more efficient infinite array code.

Much of our effort during the second half of this fiscal year was

devoted to the development of the necessary formulation for the analysis of

arrays on cylindrical surfaces. The details of this formulation are given in

the present report following this summary. As of the moment, the entire

formulation has been documented, and the finite element matrix elements

were generated using edge-based pie-shell elements conformal to the

cylindrical aperture. Most of the effort, though, was devoted to the

discretization of the boundary integral for terminating the mesh. More

specifically, various asymptotic forms for the cylinder's Green's functions

were examined, and one was proposed for its efficient evaluation without

compromising accuracy. The implementation of the proposed cylindrical

array formulation is currently in progress.
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Abstract

Conformal antenna arrays offer many cost and weight advantages

over conventional anteuna systems. In the past, antenna designers

have had to resort to expensive measurements in order to develop a

conformal array design. This is due to the lack of rigorous mathemat-

ical models for conformal antenna arrays, and as a result the design

of conformal arrays is primarily based on planar antenna design con-

cepts. Recently, we have found the finite element-boundary integral

method to be very successful in modeling large planar arrays of arbi-

trary composition in a metallic plane. Herewith we shall extend this

formulation for conformal arrays on large metallic cylinders. In this we

develop the mathematical formulation. In particular we discuss the fi-

nite element equations, the shape elements, and the boundary integral

evaluation, and it is shown how this formulation can be applied with

minimal computation and memory requirements. The implementation

shall be discussed in a later report.

1 Introduction

Conformal antenna arrays arc attractive for aircraft, spacecraft, and land

vehicle applications since these systems possess low weight, flexibility, and

cost advantages over conventional antennas. The majority of previous devel-

opments in conformal alltellllas has been conducted experimentally due to a





lackof rigorousanalysistechniques.Variousapproximateanalysistechniques
are restricted in many respects,including accuracyand elementshape,and
are basedon planar antennamodels.

Recently',wehavefound that the finite element-boundary integral (FEM-
BI) method can be successfullyemployed for tile analysis of large planar
arraysof arbitrary composition[1]. The resultingsystemis sparsedue to the
local nature of the finite elementmethod whereasthe boundary integral is
convolutional,thus ensuringan O(N) memory demand for the entire system.

In this report we will extend the FEM-BI formulation for aperture an-

tennas conformal to a cylindrical metallic surface. Both the radiation and

scattering problems will be developed in the context of the FEM-BI method.

In contrast to the planar aperture array, the implementation of the cylindri-

cally conformal array requires shell shape elements rather than bricks, and

the required external Green's function is that of the circular perfectly con-

ducting cylinder. In its exact form this Green's function is an infinite series

which must be evaluated efficiently and must also be put in a convenient

convolutional form for storage minimization.

This report presents the FEM-BI formulation, appropriate cylindrical

shell elements, and the system evaluation strategy which will maintain low

memory and computational load. The cylindrical elements will be chosen di-

vergenceless while maintaining excellent geometrical fidelity. These elements

are derived using the procedure attributed to Whitney [2]. Substantial effort

is also devoted to the development of expressions for the metallic cylinder's

dyadic Green's function which are convenient for computation, and extremely

inexpensive asymptotic evaluations will be derived.

2 FEM-BI Formulation

Consider the configuration illustrated in Fig. 1 where a cavity is situated on

a circular metallic cylinder. The cavity is recessed in the cylindrical surface

and its walls shall be assumed to coincide with either constant o or constant

planes. Also, it shall be assumed that radiating elements may reside on
the surface of the substrate within the cavities.

In accordance with the F'EM-BI formulation discussed in [1], the radiated

or plane scattered fields can be determined by considering two systems of

equations. Particularly, the fields interior to the cavity are formulated by





the finite elementmethod which results in a sparsesystemof equations. As
usual, the determination of the finite elementmeshat the aperture requires
the imposition of anexternally suppliedcondition. Forour casethis condition
becomesthe boundary integral equationenforcedat the cavity aperture.

We begin the developmentof the FEM-BI systemby first discretizing the
weightedvector waveequation in the interior of the cavity usingcylindrical
shell elementswhich are most appropriate for this geometry. Assumingthe
presenceof possiblesources.1' and M' in the cavity the vector wave equation
is of the form

_'7 X
[Vt_ f(P. O, :) 2- l,-o_(p,O,.:)g_(p,o,.:) =

(p,o.:)

,7i ~ 1-jko n [:li'(p,O,__)
ZoJ (p, o. :) + v × L,_(p, _, _) J

(1)

In this /_(p, o, :) denotes tile total electric field in the usual polar cylindrical

coordinates, _,.(p, o, z) and tL,.(p,o, z) are the relative permittivity and per-

meabilitv of the substrate o1" material filling the cavity, k0 is the free space

wavenumber and Z0 denotes tile free space intrinsic impedance. To generate

a system of equations from (1) we apply' the method of weighted residuals.
We obtain

-'<J,

-jJ,'oZo/: .f'(p, o,

V × E(p,o,:)] . I-_',(p,o,z)pdpdCdz

l_(p,o,:) j

e_(p. o. z)E(p, o. z). l/.](p, o. z)pdpdodz =

._'(p. o. =)
/-77-,.(p-_-o__) " l-(',(p,o,z)pdpdod:

z) • II"i(p, o, z)pdpdodz (2)

where |,t',(p, o, :) is a subdomain vector-valued weight function to be specified

and l,i is the ith volume element resulting from a discretization of the cavity.

(',iven the sources (J'..(l') for each weighting function the right-hand size





of (2) is knownand shall be referredto asthe excitation function definedby

fi = J, -jkoZoJ (p,O,:) "t-_'i(P,O,:)pdpdode{3)

Upon application of a standard vector identity' and the divergence theo-

rem [3], we recognize (2) as the weak form of the wave equation

; t_(P, ¢b,z) pdpd_dz

__.2 _,.(p,o,z)_7(p,o,z). l'l_i(p,o,z)pdpdodz
0 "1

_*,(p, O,--) × /_(p, _b,z). l._"_(p, O,-)as = f, (4)

with fi.(p,O,z) indicating the outward pointing normal of the ith element,

Si is the surface area of that element, and /](p, &, z) is the total magnetic

field. It can be shown that the surface integral of (4) vanishes for all those

elements which do not. border the cavity aperture. Furthermore. their non-

zero contribution is limited to the portion of their surface which coincides

with the aperture. Thus. Si is a subdivision of the aperture surface, and the

surface integral can then be more specifically, written as

s fi(a. o. x O, z). ok, z)(add_dz) (5)z) fi( ,
al

where S_, denotes the ith element of the aperture surface and/_(a, 0, z) is the

unit vector normal to the aperture surface.

To eliminate/] from (4) we introduce the boundary integral equation

o.:) : fi'(., o, :) +

fS ' ' ©" ' " ' ' 'jt,'oZo fi(a,o,z ) x E(a, z ).(_;_2(a,O,z'a.O z )(adodz ) (6)
a

which provides an additional relationship between E and /_ on the aperture.

In this H'(a.o,z) is the incident magnetic_field evaluated on the aperture,

1 is the free-space admittance, and G'¢2(a,0, z; a, o', z') is the electric_7' = Z

dvadic Green's function of the second kind for a metallic cylinder [4]. This

Green's function satisfies the radiation condition and the boundary' condition

" s J

gr x G¢.a(a,O,z;a,O,z ) = 0. (7)





Upon inserting (6) into (4) alongwith (5), oneobtains

f v × E(f,,o,:). V × ff',(p,o,--)
', t_(p, o,z) pdpdodz

-_o_f _(p,O,--)f(p,o,--). ff,(p, o, :)p O dod:
'l

: )× #(_, _ ,-- ).
at a

o'. • I(;(a O. z)d6dzQ,2(a. O. :: a. z )do dz'
]

= J, +jk,o,zo[. f_(_.o.:) × _7'(a,o.:). ff,(,_.o.:)do& (S)
(It

which is an equation only in terms of the electric field in the cavity volume

and on its aperture. It is important to note that 5,'ai denotes integration over

the ith surface element coinciding with the aperture whereas ,7, indicates

integration over tile entire aperture.

Following the principles of Galerkin's method for a solution of E appear-

ing in (8), we expand E in terms of the vector-valued weight functions also

used for testing, i.e..

_/p.o.:) : _Ejff_/a.o.:). {,qt
./=1

In this expansion N_. is the total number of unknowns or edge fields interior

+ aperture edges) and t[)(p,O,z) are the subdomain vector-valued basis

functions. By' necessity the aperture field takes the form

i_rv

£(a,O,z) = _E;(5=(j)l,_'0(a,O,z ) (10)
1=1

where

,L(j) = I ,.f i(; r_ _,l,_,t,,,-,

= 0 else (11)

Combining (8). (9) and (10) we obtain the FEM-BI system

a=l

v × fi",(p, _,,:). v × i.i'q(p,e,--)
p dp do dz





: ) × p(..O, • ff' (a,O' .:')dO'&' , od:
a../

= f, + jkoaZo fs fi(a, O, z) x .H'(a, ¢, z). l'Vi(a, O, .:)dedz
,.11

Below we discuss the specifics of tile weight/expansion functions.

(12)

3 Vector Weight Functions

To explicitly compute the matrix elements resulting from (12), we must first

specify the vector-valued weight functions _Pi. Traditional node-based shape

functions associate the system unknowns (Ej) with the field at a node. In

contrast, edge-elements have their degrees of freedom associated with the

field along an edge of the element..Most importantly, the first order edge-

based shape functions can be chosen to be divergenceless, thus satisfying an

"Vinherent characteristic of the unknown field. (omparatl elv, the first order

node-based elements are not divergenceless, and hence a penalty function [,5]

must be used to ensure a valid solution of (1). Whitney [2] developed a

formalism from differential geometry which allows the generation of edge-

based elements from traditional node-based elements. Although Whitney's

procedure does not guarantee divergencetess elements, we will choose a basis

which is divergenceless.

\\'hitnev developed a family of p-forms (where p indicates the order of the

form) from differential geometry which possess characteristics that are use-

ful to the finite element communitv. Node-based elements and edge-based

elements correspond to \\"hither 0- and l-forms, respectively. Traditional

first-order Lagrange elemeuts (0-forms) provide field continuity which is not

physical. Namely, these elements have continuity of both tangential and nor-

mal fields at the element junction whereas physical requirements allow for

a discontinuous normal compouent. Edge-elements (l-forms) have only tan-

gential continuity' and are therefore better suited for electromagnetics appli-

cations. It should also be mentioned that the overspecification of continuity





by the 0-formscausesspurioussolutionsof (12) [6]. Although first-order La-
grangeelementsareusedasthe 0-formsin the literature [6], thesearemostly
applicable to elementssuchas bricks or tetrahedra, and the corresponding
1-formsare divergencelessby virtue of the first-order 0-forms. However,in
the caseof cylindrical she//elements(seeFig. 2), the 0-form elementscannot
beof first order if their corresponding1-formsareexpectedto bedivergence-
less. To ensurethe divergencelessnessof the 1-form elements, the 0-form
cylindrical shell elementsare chosenas

Al(;,o, z) = +_p_ (P

,\2(0, o,:) = -]_(P- P_)(_- A

,L(p, o, :) = +, _2 (P - p_)(e -
V D A

A4(p,o.:)=-, P/-_2(p-p6)(¢-
V P A

_5(p, o, =) =

A6(p, 0, =) = +_/_(P - po)(e

,\r(p, o. :) = - _-(P - P_)(<_

As(p. o, -) = +V/_ (p - pb)(0

- pb)(¢ - CT)(_ - =,)

or)(= - =,)

or)(= - :_)

- ¢_)(: - :b)

-- O,)(: -- :b)

- ¢1)(: - :b)
A

- o_)(- - :b)
._ (la)

with A = (pc, - pb)(O_ - _._)(zb - zt) and is understood that the support of

each 0-form element is only within a single shell. The subscripts correspond

to local node numbers and the element limits (p_,pb, Ol, Q,-,Zb, :t) are shown

in figure 2..An example of a 0-form is shown in figure 3 where At(p, o, z) is

graphed over the three faces of the element. \Ve remark, however, that for

our application p_ and Pb are very large and thus for all practical purposes

the shape elements (13) are first order.

The \Vhitnev l-forms are generated ftom the 0-forms by employing the

7





relation

ff_(p,o,z) - A,(p,o,=)V,\j(p,O,z)_A_(p, o z/_7.L(p.O.=) (14)

where (i,j) refer to the node numbers which define each edge. Denoting the
normalized shape elements by

-' ff"__(;,o, z)

._,_x{IIILj(;, o, =)11} (15)

From (14) we obtain

:'_;_;(p,o, :) = p_(o - o,.)2(: - :_)2 . p_(o - o_)2(: - :_)2
p(o_--o-_)_( =-_p ,%(p,o,:) ---

p(o,. - ot)2(:, _ -b)2 p
:_56(p, 0, :) = p_(o - o,.)2(: - :b)2 p_(0- o_)2(: :b .

p(o,. o_)_(:, - :b)_ _ "v_;(p, O, :) = _ )2
P(O_ - ot)_(:_ - :_)_P

•;J4(p, o. :) =

.\:23(p, o. :) =

P_(P-- Pbj;(z-- 2)2

- p_)-(: - :,)

p,_(p- pb)_(: -- :b)_ -
P2(Pb -- P,,)_(zt -- :b) _ 0

p_(p_ - p_)2(: t - :b)2 °

:'VJs(p,0. :) = P_(P- Pb)_(° - o_)_
P(Pb -- p,,)2(O,. -- Ol)2-

p_(p -- pb)2(O -- 01) 2 .

_%(p, o, z) p_(p - p_)_(O - O_)_
p(pb - p,)2(O_ - 0_)_~

:%_O.o.:) ;(_ ,o,,)_(Or 0,;_- .%'_(p.O.=)= _ : __(,_(_ ,- - (_--:_6)

These can be put in a more compact tbrm bv introducing the definitions

.%(p. o, :: /),5, _) =

:%(p.o..:;/). 5. _) =

.\':(p. o. :: h. o, _) :

p(o,. - O_F(:, - :_F

P;(Pb - Pa )_( zt - :b ) _

(a-/,)(p _ h)2{o _ _;)2
P(P_ - P_)2(O, - oz); (17)





where d = p_ + Pb aad (/_,o,-:) are parameters which define each 1-form.

Comparing (17)with (16), we have

N12(p,O,z)= :Vp(p,Cp,Z;',Or, Zt), ._'43(P,O,Z) = Np(p,O,z;.,O_,z,)

N56(p, ¢, z) = N_(p, O,_; , 0_, :b), -'%,(P, O, z) = N_(p, _, :;., 0_, :b)

N_4(p, ¢, :) = NAp, 0, :; pb, ", :,), Nss(p, 0, z) = N_(p, O, z; pb, ", :b)

N_3(p,O,z) = No(p.o,z;p_,.,.:t), NB;.(p, 0, z) = No( P,o.z;pa,.,%)

N_5(p, O, z) = N.(p, o,---;Pb,O,',"), N2dp, O, z) = .¥.(p, ®, z; p_,,0_, ")

N4s(p,O,z) = N:(p,O,z;pb, Ot,'), _3¢(p,O,z) = N=(p,O,z;p_,.Ol.') (18)

These 1-forms will be used as the vector-valued weight functions to form the

system (12). Figures 4-6 illustrate some 3-D plots of the weight functions for

i roll-off in the p-componenteach generic form (17) where we recognize the 7
as required by the divergenceless condition.

4 Matrix Elements

Above, we have derived a FEM-BI formulation for apertures on a circular

cylinder (12) and developed the appropriate Whitney 1-forms (17) for the

solution of the system. In this section, we will compute the matrix elements

associated with the finite element submatrix of the system. The evaluation

of the elements associated with the boundary integral will be discussed in
Section 5.

The overall matrix svstem resulting from (12) can be symbolically written

as

[A,,] " [B,,]

[C,j] " [D,j]

[E_] = [Ji] (19)

The submatrix [Aii] is sparse and associated only with the interaction of

edges interior to the cavity volume and excluding those on the aperture.





We shall refer to theseedgesas belonging to the set 2". \Vhereasthe
apertureedgesshall beput in the set A. The sum of the edges in tile sets 2"

and A include all edges resulting from the discretization of the cavity and its

aperture excluding those which lie along metal. With this identification, the

submatrix [CiaJ is associated with the interaction between the interior and

aperture edges, and is also sparse. The last submatrix [Do] results from the

boundary integral equation and provides the interactions among tile aperture

fields/edges. It is consequently fully populated, and in the next section we

shall put it in circulant form to reduce its storage requirement to O(.V).

From (12). the nlatrix eleJlletlts can be explicitly wl'itten as

o, :)ff[,(p. o, z) i.P,(p,o, :)] pOde&
,J

v × li:;(,.,,o. :). v × If,,(,,, o, :)
Bij = , IL,(p,o,z)

-)If; - • l.P,(p, )}p-I,-oe,.(p, o, (p, o. ) o, z dpdodz
..1

,r:to.o.:,

..... ] }G_(,_,O.::,_,o,.: ) × ,a((,,o, ) :r'_(,_,O',- " z )dO'dz' dodz {i

f v × ff;(p.o.:).v × tP,(p,0,:)
(-' A ', tl,(p, O, :)

' -)lf;(p. . ti",(p, :)1:,0_o,::-l%_,(p, o, o. :) o, {i
.i

... = j,..[,-,x <(...o.:)

-t,'2e,(p, O, z)l(_(p, O, :)" l'[r/(p, e, z)]pdpdedz
.I

+(ko,) ,,(9) If',(a. o, ..-) ,a(a o.-:)×
• clr

{i,j C 2"}

.4. i _ z}

10





, -" ' ' _ . " ]dodz} {i,j E A}(20)
6'_2(a O,.,a,O,z ) x [)(a,o',") lfS(a,O,z')dO'dz'

a j

Since I,I,'} and 1,_': are subdomain basis functions whose support is restricted

to a single element, it is easily, x'ecognized that the submatrices [.4,j] an(t [C,a]

are sparse.

We may now proceed with the evaluation of matrices [.4,2] and [('u] since

these do not require a boundary integral. If we assume that the material

properties are constant within each element, we may define two families of

integrals which will specify the submatrices.

The explicit determination of the elements Ai2 and C, i invoh'es the eval-

uation of the two integrals.

I(_) f

I(2)
ab = "_

V x .V,,(p, o, -" ill, ol. 5i) . V x :_b(P, O. z; _.. Ok., 5_.)p dp do d: (21 )

_=(p, o, -" fit, ol, -:l) • :Vb(p, O, z; Pk, _, _-k)pdpdodz (22)

in which (a,b)E {p,o,z}, (l,k)E {i,j}, and f represents one of the generic

1-forms (17). Carrying out the required vector operations and organizing

each integral in a separable form we have

JfO 2 _zc;_d, o,(o- &)_(o-&) doj, (: - _')(:- -_)d=4p_ . -7- , iO, : O,) 4 b _-:7---" _',?

4 _/[_+_,i:" (°-&'(°-°_'_°J( :'(---')_(:--_)_+ P" ,, 77 7-07:o,)_ _ i7_7:-,7_ '_: (2:])

(d - ,ak)2 _ (p - _k)(p + A)-"o (,_ 2 7o_ o ,,_ dp.

*" (Ol-O) do -" (z-__l)2(z- 5k) 2
.£, (o,--o,? f, (zb-:,)4 d: (24)

i (l)
,o= (d - ?k) fro (p - A-)(p + A.)= -2p_ (Pb p_)2 . p2 dp .

(25)

11





(r)
©o

(d- _l)2(d- _)_(o_ - Or)+,1

_2 (d- _61)2(d- [_-)2(o, - Ol)

(pb - p,,)4

_o( d -/)l)_( d - Ak)_(o, - Ol)

t,- _,/_/.,-_/_/o.-o./r'/,- _./_/,-_./_ r
(Pb -- ft.)4 Jp p3 dp ]."' (z - 5l)(z - _.k) d:

o -._ (z_ - zt) 4

[_ (P- _')(P- _)o f._''(: - _')_(:- _)_d:

. p4 " :b ( "b -- :t )4

_pb (P--Pl)(P--/_Z.)2 /.], (z--__,)2(Z -- ._k)2- (,__,o)_ o p, 0 i_ :2-,0 d:
+

(26)

_;:7o7 Lo ,,
r' Io-;_I_,or:,I_-:-,Id:]_.,, (o,, ol)_ ]._ (:__:,)2

dp.

(27)

+4(d- fil)(d-/)_.)(:, - :_)

(pb - p_ )4

_._(d - At)(d - A.)(:, - :b)

° , (0_ - o_) 4

ff_ (" - ?_)(p - ?_) _o, (, - _)_(_ - _)_
° P dp ]_, ( o,. - Ot )4 do

_ (P_, I',,) _ _(P-P,)'_(P-A-) °_ )2p2 dp_ (0- {9_)2(d) - f_.

_"-_.)(.'-_.)(:.-=_/?I,-_.)(,-_.)_/f to- _./'to-_.t'- (,__ ,o)4 o ,, d, , iZ :: 7_,p dO
_9

+

(28)

12





I(_)
PP

(2) =
O0

(d- /st)(d -/sk)(zt - z8)
"' (p -/5_):(p -/sk) 2
,_ P(Pb - p_ )4

(30)

" (O - ?_12(0 - o_)2dOdp _ (0_ - Or)4

(a_)

In addition, it should I)_-z_oted thai l(k) r(k) Each of the double integrals"ab _ *ha "

in (2:3)-(:11) is associated with a simple second order polynonlial whose closed
form evaluation is trivial and is omitted here.

5 Dyadic Green's Function

To complete the evaluation of all matrix elements in (19) we must now look

at B,j and D, s. which involve the evaluation of a I)oundarv integral. The

boundary integral requires numerical evaluation and central to this task is

an efficient computation of the dyadic Green's function. G_2- This Creen's

function introduced in (6) was derived from vector wave functions using the

procedure espoused by Tai [4]. The resulting modal solution although exact

is extremely costly to compute, and a more et_cient evaluation rnust be

presented for practical purposes. This is addressed below.

Recall from (20) that the boundary integral is of the form

I,_1 li:;(,, o. -"/5,,o,.-,). /5(a,o, :) x £;_(a o, :: <,, : )
at aj

J ' _i ' ' " ")] ' 'xtS(a, ,z ).I _(a.o,z'/59,O;,G dodzdodz (32)

where (a.b) (7::{o, z} corresponding with the vector component of the test-

ing and source weights, respectively. Carrying out the vector operations we
obtain

__ ,, --I_*_. l.V.(a. , o. z:,bi, O. b,)IV-(a, o . z . /sj, oa, ca)
Js Js
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G¢,:,(a. 0 - o'. z - z')do'dz'dodz (33)

at oj

G,:(a, o - o', z - z')do'dz'dodz (34)

So '=£ £
lit aj

C_:( a, 0 - o', z - z')do' dz'dOdz (3,5)

(;.:_(,l, o - o', z - z')do'dz'dodz (36)

with the weight functions as given by (17). The convohitional nature of

the Green's function is explicitly' shown in (33)-(36). Formally, the Green's

function satisfying (6) and the radiation condition for the cylinder can be

expressed as

G_°( a, O, _) -

(,":'-(,. o. :) - (2_) _ ,,:-,._"_

' i[ ±
(2,_)>...... _. [ H_)(x)

-'='kp 2 1 H_2)(:c) ejl,___=_ldk.(37 )
_-_ .r F#n t.l" )

/_ ( nk: _ H(n2l(.r)e,(,,o_kZ)dk:(3S)
-,x _, rS n t .r /

(1,]¢Z_.oa]% ]_ 2 H(2)(l') ] e'(n°-k" ')d/_z(39)H'n(2,(,r)

,vitt, 0 = 0- o'. _. = : - :',/% = _o 2 - kT, z =/,-:, H_I( .)is the ,d_'-order

Hankel function and H',,(2i(.) denotes the derivative of the Hankei function

with respect to its algul'nent. It is apparent thai the evaluation of G::, G °:

and G °_ using the expressions in (37)-(39) is extreinelv expensive due to

the slow convergence of both ttle series and the integral especially for near

self-cell (O, 5 m 0) evaluation.

Bird [7] suggested a more etficient evaluation of the modal Green's func-

tion by introducing niore rapidly convergent integrals through a procedure

attributed to Duncan iS]. In doing so, he exploited the symmetry of the

infinite series, and the indefinite integral was converted into two other inte-

grals, One of these is definite and the other is a rapidly converging indefinite

1,1





integral. His acceleratedmodal representationsare

,)O

c::(. i et - 2 E ¢,,cos(,,3)
• ]_'°772'(12 n=O

j/,.o ,_
a_("';'_) - 7 _ _'c°s('';)

n=O

.) 2,&

- _ sin(,_;)
GC'_ (a , ;, 5) _3 a ,_=o

w h e re

JO0 JO0 ')'2'
I Gl(5,1_,t)dt + j

/oo /o1 G2(-,n,t)dt + j

/o /7G3(5., 7_,t)dt + j

(;, ( _ - -jt)dt](40)

G2( _ - -jt)dt](41)

G'z( 5, z. -jt)dt](42)

(-,'l ( " ",1)

6'2( _ ,,,/)

(,':_(z,.. 1) =

( -3 kozt

\-2 _ (43)• ,,(/,'avff t 2)

-jx-,,.-_ [ 1

(_.,,-)_-f7 t_) LM_/_._- t_) +

nt _2 V2(/.a_)] (44)(x._14F7-_-t:/

t_le -Jk°St 1

(t,.)a(1 -t2):v_(/,-. vq -t_)
(45

and

.lib(t) = .],2(t)+ };2(t) (46
'2 "'2

.ViZ,(t) = .1,_ (t) + ),, (t) (47

(,_ = '2 n > 0

= 1 n = 0 {48)

in which @(t) and };,(t) are the usual nth-order Bessel functions. Further

details regarding relinements required to manage the singt, larities ill the def-

inite integrals are given in [7].

Although the accelerated modal solution (40)-(42) given above are more

efficient than the original modal form (37)-(39). for large cylinders with ob-

servation and source points far from each other it is instructive to revert, to

some asymptotic ex'aluatioll o[' (37)-(:19). Several research groups ill the past

have developed sucl_ ovaluations of (37)-(39), and the Inost notable of these

are attributed to Pathak [9], Boersma and Lee [10], and Bi,'d [11]. These

15





asymptotic formulasare basedon similar derivations and differ only in the
level of approximationsofferedby eachexpression.Sincethe formulas pre-
sentedby Bird aregelwrally tile mostaccurate,weshallconcentrateon them.
However.wenote t l,at Boersl_taand Lee'sexpressionsare particularly well
suited for self-cellevaluationsand Bird usespart of their solution to improve
his formula as the sourceand observationpoints al)proacheachother [11].

The asymptoticevaluationsareonly usefulfor largeradiuscylinderssince
they employ Watson's transformation [12] to convert the series in (37)-(39)

into a contour integral. After some manipulation, the contour integral is

evaluated as a residue series. Each residue contribution is associated with a

creeping wave which ellcircles the cylinder from the source to tile observation

while traveling on the cvlincler's surface along a geodesic path. Typically. for

large radius cylinders t l,¢. contril)utions of those creeping waves which encircle

the cylinder once or more are neglected since they are weak in comparison to

the direct creeping wave contribution. Bird [11] uses a uniform asymptotic

expansion of tile Hankel functions in (37)-(39) and a steepest decent path

evaluation of the Fourier integral to achieve his formula. He found that

G::(a,o,z)

C;°:(a, ?_,S)

"- -)-Tq_ -'*°_ (coJO

\72 _ _'(3)+ 60

l 2 t J 3t ' ]
J

]]
v ( I-g-gco,o) a)jk-v ,J

"" 2rqe sinOcosO (1-3q(1-q))v(3)

+q _._o-_ _,(3)+ :_6 4._

+ q(1 - q)(2 -3cos20)) t,(3)
\

17 siTe"O)_'1(3):36

(lee201) " ]
.3

64 -4sec O) v (_)

(49)

(50)
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- + q(1 - q)(2 - a i,;'ot)

+q ((,(3) - t,(/3))sec20 + -_tan20 - sin20 7'(3)

/17 2

+(-_stan20-lsin20"_v2(/3)+_ 'tan2Ot'°'(3, ]24/

I1 ., ,
-Fq2,_/-_2.'_ec'Ou (3) -t-

I,.

_ (51)

2

•_ and J = /,'_ f _°_° Iswhere q = .17 [_j The geodesic path length is given by'

, = V/52+(a_)2 and the geodesic trajectory is 0 = tan-'(5_ ) which is

shown in figure 7..Also, • = o or (I) = 2rr - 0 depending on which of the

two direct l)aths are taken as illustrated in figure 7. In (49)-(.51), u(3) and

c,,(3) represent the soft and hard surface Fock functions, respectively. These

functions are characteristic of the creeping waves on a circular cylinder and

are discussed in detail by Logan [la]. The steps involved in the derivation of

(49)-(51) are described in [11].

Figure 8 illustrates a comparison between the asymptotic formula (49)-

(,51) and the accelerated modal solution (40)-(42). The given curves corre-

spond to the magnitude of the dyadic components along a 0 = 10° trajectory

on an a = 4,\ cylinder and the dynamic range indicated confirms our asser-

tion that geodesic paths which encircle the cylinder one or more times need

not be considered since the resulting large path length results in negligible

contribution. Figure 9 shows the phase error between the modal solution and

the asymptotic formula. As seen, the asymptotic formula has small error in

both magnitude and phase even when observation points are quite close. In-

deed, Bird has used these formula to investigate the mutual admittance of

an aperture on a cylinder with minimal difference f,'om a more exact evalu-

ation [14]. It goes without saying that since the computation of the mutual

admittance involves illtegration through the singularity of the Green's func-

tion, we may expect excellent results on using the given asymptotic formula.
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However.wemay find it advantageousto usethe modal solution for self-cell
contributions and the asymptotic formula for all other situations.

6 Future Tasks

\Ve have presented a FE_I-BI formulation appropriate for al)erture anten-

nas on a metallic circular cylinder. Tile FEM-BI equation was derived from

tile vector wave equation and converted into a system of equations using

Galerkin's procedure with vector-valued weight flmctions. These functions

comprise the edge-based elements which are derived fl'om node-based ele-

ments using Whitney's formalism. Since these elements have a high degree

of geometrical fidelity for cylindrical atTavs and are divergenceless, they are

well suited for our purposes. We have shown that the boundary integral may

be numerically evaluated in an efficient manner using asymptotic formulas

for the dyadic Green's function while reserving the possibility of using the

exact,accelerated modal (',reen's function for the self-cell, if necessary.

Future work will entail the iml)lementation of the proposed FE._I-BI for-

mulation given in this report. \Ve will exploit the convolutional nature of the

boundary integral (3:1)-(36) in the context of the Conjugale Gradient-Fast

Fourier Transform (CG-FFT) solution technique to maintain low computa-

tion and O(N) memory requirements. The FEM portion of the matrix is of

course sparse due to the local nature of the finite element method. Upon vali-

dation of tile implementation by comparison with limiting cases and possibly

measured data, we will undertake a thorough investigation of tile properties

of conformal arrays on a circular cylinder including the following studies:

mutual impedance, pattenl s\'nthesis, element shadowing, and scattering re-

duction techniques.

The experience gained in developing an accurate model of conforma] ar-

rays on a circular cylinder will allow us to extend the analysis to doubly

curved cylinders. This will be achieved by employing Geometrical Theory of

Diffraction (GTD) principles to the Green's function presented in this report

so that is is accurate for convex cylinders. In addition, a major challenge will

be the reduction of memory requirements for the [Do] submatrix (20) since

for lion-circular cylinders tim boundary integral will no longer be convolu-

tional and thus the matrix will not be Toeplitz. \\:e are interested in using

wavelet transformatioll tecllniques to convert the fully pol)ulated matrix into

18





an equivalentsparsematrix. An e_cient and accurate technique for mod-

eling conformal arrays on doubly curved surfaces would be very valuable to

the antenna design community and will allow full utilization of this versatile

antenna.
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